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FOREWORD

This document represents the third progress report on the NASA research
grant NGR 44-001-027, The report is divided into four parts. A summary of
these parts is presented below in order to outline the general nature of each
section,

Part I is a revision of a section of a previous report which developed
an algorithm for utilization of dynamic programming for determiming the
best fit or best combination of single estimating relationships into a com-
posite estimating relationship. It has been extended to include an example
to illustrate the mechanics of the algorithm,

Part II is a summary of a major part of the research conducted under
this grant up to this point in time, It is an effort to 'bring the various
parts of previously reported research into a proper perspective with each
other,

Part III is an extension of work previously reported in Progress Report
IT, This section contains an explanation of the appended computer program
and its use for computation of run-out costs for subsystems presently being
developed.

Part IV is a completed area of research. This report contains the
results of using expertise in the formulation of mathematical models, Due to

its integral nature, it is submitted as a separate document.



DYNAMIC PROGRAMMING ALGORITHM FOR DETERMINING 'BEST FIT'
by
Glen Self
Texas A&M University

The problem of weighting individual predictors into a single pre-
dictor is one which can be approached by more than one method. One
method which was reviewed recently was that of subjectively weighting
the individual predictors which contained a single independent variable
according to the importance that variable was felt to have on the func-
tion being considered. This particular approach did not produce con-
sistently good results and did not present a quantitative base for
making decisions as to whether the individual predictors were at fault
or the weighting scheme being used. Therefore, by expanding the
problem to (1) one of having any number of terms that were to be com-
bined into a single function under the constraint that the sum of the
weights used should approximate one (2) one of being further restricted
by a small number of data points (which precipitated the original
problem of only using a single variable predictor for a given type of
function and still have some degrees of freedom associated with the
error sum of squares) (3) one of having an inherent flexibility guch
that consecutive last terms could be deleted from consideration and
still provide the optimum solution without recomputation, (4) provid-
ing for a built-in sensitivity whereby the effect of variation in the
weightings could be evaluated and (5) where the minimum sum of squares
criteria could be used as a basis for determining optimum weighting of

the terms.



In the dynamic programming terminology the stages correspond to
the terms which are being combined; therefore, it is necessary to
develop the recursive relation of dynamic programming. For example if
the actual values are vy and the individual predicted values for the

first term is x then the objective is to select some value 8, such
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minimized subject to O z 61 z 6. Using this same notation scheme, the

objective for a two-term equation is to determine
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It is probably only of interest at this point, but should be clari-
fied for the next stage of the computation is that the values of 61Xli
are fixed, based upon the value el takes on in order to optimize
f1 (6 - 62) i.e., some value of O z 61f (6 - 62) which minimizes the
error sum of squares in stage 1. Therefore, in order to denote the
fixed values of the previous stage as being different from the variable

values in the cross product term let 21 = It should also be

elxli .
pointed out that
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vy is simply a constant.
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It would be possible to write the general recursive relationship at this
point, however, there is a subtle point that should be illustrated.
This will be accomplished by considering the third stage or third term

to be introduced into the model.
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The point that should be noted is that (6.x ,) is fixed for a

1* li 2 2i
given (06 - 93) and this is the computed values of the model through the
previous stage which minimized the error sum of squares for the speci-
fied sum of weights (e1 + 62). Note, (6 - 63) = (el + 92). Therefore,
if these fixed values of (lel + 62x2 ) are represented as

Z,, = + 0 9% ) then;

31 = (8%

in
mi <

< n 2 n 2 n
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This type of dynamic programming formulation requires that n additional
values of Zg be carried from stage to stage. It does not require that
they be retained for all previous stages only the preceding one since

they are cumulative in nature. Then
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for the computations of stage s. The n stage recursive relation can

be written as:
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In order to compute these values by standard methods it will be
necessary to make 6 discrete. The increments can be refined to any level
necessary in order to obtain a satisfactory weighting of the terms. This
is essentially a one dimensional allocation problem with minor modifi-
cations,

n
Normally it would be expected that = 1 would be the con-

jE1 ]
straint on 6; however, due to the built-in sensitivity of dynamic pro-
gramming it may be desirable to constrain 6 to a sum greater than 1 in
r to determine if biases may be contained in the original individual
terms. The dynamic programming solution will provide solutions for all
values of 6. Further, it will also provide solutions for all arrange-
ments of consecutive groupings of terms with the last term being deleted
each time. By ordering the terms according to their suspected im~

portance with respect to the model being constructed, the contribution

of each added term can be considered for deletion in the reverse order



in which it entered into the calculations. A simple example is con-
structed below for illustration of the method.

Consider the following example application of the dynamic program-
ming technique discussed above. The data are as follow:

Y =[1, 3, 8]; Xl = [1, 2, 3]; X2 = [0, 1, 4]; X3 = [0, 1, 3],
where Y is the dependent variable and the Xi are independent variables
which are to be used as predictors of Y. It is further assumed that
the functional form of each of the three predictors has been given as:
§1 = alxl; §2 =0, /_i; H §3 = a3 Xg .

By using a least squares fit for these three equations the following
values of a are obtained.

A

Yl = 1,857 Xl; Y2 = 3.80 V XZ; Y3 = 0.915 X

2
3 Ld

The problem is that of combining these three estimates into a single
estimate which will reflect the nature of Y for extrapolated values of
the independent variables. These data could be combined in a single
equation by the least squares method which would simply be the solution
of linear equalities which would provide

Y = 1X, + 5/7 VK, +2/7x§.

However, if four terms were used, the least squares approach could not
have been used. The solution of this problem by dynamic programming
is given in Figure 1,

The solution provided by dynamic programming yields weights of

0.4, 0.4 and 0.2 for Xl, X, and X3, respectively., This will provide a

2
final model of the form,

Y = (0.4) 1.857 X, + (0.4) 3.80 /X, + (0.2) 0.915 x§

u

0.7428 X, + 1.52 /X, + 0.1830 xg )
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This would probably be considered to be different from the solution
given by the least squares approach,

It probably should be reiterated that the dynamic programming
procedure is primarily for the limited data case and is not offered

as a replacement for standard statistical techniques.
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QUANTIFICATION OF SUBJECTIVELY DETERMINED DATA
IN THE FORMULATION AND UTILIZATION
OF MATHEMATICAL MODELS
by
Glen D. Self, Assistant Professor
Department of Industrial Engineering
Texas A&M University
Abstract
The limited data case in the construction of mathematical models
has created an area of research for the utilization of subjectively
determined data. Research at Texas A&M has pointed out some appli-
cations in cost modeling and has plans for extending the research. In
general it has provided for a systematic methodology for model develop-

ment in the extremely limited historical data case by quantification of

expertise,

Introduction

Recently the use of subjectively determined data in planning and de-
cision making functions has become more of an accepted and acknowledged
approach in those areas where little or no historical data exists. Some
of the more widely known developments are Industrial Dynamics at MIT,
Project Delphi at RAND, PATTERN at Minneapolis - Honeywell and
some recent work within NASA. One point of interest which has been
established is that most everyone will provide an honestly considered
opinion and will argue at lengths over whether a function is concave or

convex and cite specific examples in defense of their respective positions.



Often the outcome of these discussions is the resolution of sematic
differences.

In general the acceptance of the quantification of expertise has been
positive in nature. There is a near infinity of published articles dealing
with the quantitative problems that relate to the management decision
making process. However, the area of developing the inputs necessary
to use those tools is an often neglected area. The response that these
subjective data methods have received is an indication of the wealth of
information that experience provides as it relates to the formulation
and use of mathematical models in decision making. The research
presently being conducted at Texas A&M in this area is directed toward
the further refinement of the subjective data approach. The research is
concerned with utilizing a basically statistical approach to the problem
of resolving questions of convergence, distinguishability or discrimina-
tion among subjectively assigned values, and the formulation of mathe-
matical models. The details of the research at Texas A&M may be
found in references (1) and (2). The specific work is oriented toward
cost models; however, the approach and the research problems evolved
are applicable to the general area of utilization of subjective data. This
research is an outgrowth of some previous experiments in the area of

quantification of expertise (3), (4).

The Model Builder's Dilemma

A number of organizations have initiated construction of mathe-

matical models to represent various aspects of the space program in



order that they might be used to assist in the planning function. As
these models are expanded and become more complex in order to rep-
resent the detailed aspects of the process involved, the collection of
historical data to support the formulation of the model soon forces the
model builders to enter into an extensive campaign to collect data or to
contract the dimensions of the model to those more compatible with the
data available. In addition to the limited amount of detail available in
terms of data, there is also the problem of the number of samples
available with which a homogeneous data base can be formed. Launch
vehicle programs are more numerous than the spacecraft programs and
can provide one to five more data points on a subsystem basis. However,
model building from the standpoint of using standard multiple regression
techniques or other statistical inference techniques soon encounters
difficulties \;vhen testing the significance of parameters derived from
these limited data. Extrapolation of re'sults may tend to cast doubt upon
the validity of the model itself. The basis of the judgement of these
models is the potential model user whose experience background indi-
cates that future events would differ from those provided by the model.
If in fact this information is accurate and can be quantified it could be
of value in formulation or utilization of the model. The availability of
persons with more detailed information that could be used to equate the
various data collection systems and break out component parts of the

total cost picture as the model builder has need, introduces the question

of whether a large amount of good information is being passed over in



order to obtain some questionable data.

In general the '"'no data' and ''gross data'' situation leads to various
approaches in model development. This takes on different forms such
as, (1) labeling the estimation or prediction function as one of manage-
ments prerogatives, (2) using gross models with the contention that the
model will give satisfactory results, (3) installing data collection systems
that will provide data for future model development, and (4) providing
for the development of a logical and consistent model structure with the
plan that all available data will be used with provisions for revision as
more data becomes available and provisions for incorporating the avail-
able expertise. This latter course is the one primarily under investiga-
tion and will be the subject of this discussion.

The utilization of subjectively determined data has shown a number
of uses and the results are still in the trial and acceptance stage, an
academic look at these developments, results and projected results are
felt to be in order so that an exchange of ideas may be promoted and this

general area of research evaluated.

t of Research Area

Developmen

The basic ideas developed in this paper were initiated and initial
development began with the Cost Implication Model (4) and the Contin-
gency Planning Model (5). These models provided for the use of sub-
jectively determined data in order to assess the effects of various pro-

gram contingencies as deviations from a pre-established base case. In



general, the models were to assist in the evaluation of time dependent
occurrences which could not be accommodated in the normally static
type cost model. This led to the construction of computerized models
with library data that was highly flexible as to content and use within

a pre-established model structure. The models provided for changes

in both library data and problem data to determine the form of various
cost-time relationships to be used in specific applications of the models.

The response of this type of model to the specific details of a plan-
ning situation and the generally acceptable results led to the further
exploration and additional research in the area.

Many readers schooled in the classical modeling techniques will
object on the basis of user bias being introduced directly into the model.
The counter argument is that the models referred to above are simply
the tools of the user and the results are his responsibility relative to the
problem being explored. The purpose of the model is to combine in a
logical and consistent manner all of the information available at the
time the model is exercised. It is simply to assure that all things have
been considered by the model user and to provide for the use of avail-
able subjective data along with existing historical data.

Generally some known data point is used and the general form of
the extrapolation is left to expertise. In this way it is possible for the
model user to contend that if the cost at some point in time is of a given
level, then the future costs are expected to accumulate according to a

specific pattern. Obviously, if the general form of the behavior of
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costs can be extrapolated into the future, then the historical data could
be used to determine the relative location of a curve of that form. In
this manner, limited data of three or more points can be used to an
advantage without obtaining trivial answers. By trivial, it is meant
that the model fits the data exactly and does not behave properly outside
the range of the limited data.

The research in the general area of the limited data case has been
along a number of different paths. However, most developments have
been in the area of using subjective data to extend the results available
from the more quantitative tools and then the use of quantitative tools
within the subjective extensions of the available data. Research which

has been completed in this area includes the topics discussed below.

Combining Estimators in the Limited Data Case

In the limited data case it is necessary to determine the ''best fit"
of a functional form to the available data by use of a single independent
variable. If there are a number of variables which are generally con-
sidered to influence the response being studied then there is the addi-
tional problem of combining the individual predictors into a single pre-
dictor which can be considered '"best" from the standpoint of the data
available. Theoretically, if there is a single response which is pre-
dicted by a number of variables and each variable is represented in-
dependently by an equation, then each equation could be used separately

to predict cost. Therefore, it is suggested that the individual predictors



cannot be added but must be weighted to obtain a best estimate of the
cost.

If they met the requirements of independent estimators with suf-
ficient statistical information then the best linear combination could be
formed by weighting them inversely proportional to their individual
variances. However, the lack of data and independence suggests that
some other method should be used. It is possible to apply a subjective
weighting by selecting or ordering the predictor variables from the
most important to the least important and assign weights which sum to
unity. However, it was shown that a dynamic programming formulation
of the problem could determine the best weights to be used in combin-
ing the functions, where best is to minimize the error sum of squares.
This part of the research was used to point up the fact that once the
modeling formulation has been turned over to the subjective mode, it
is still possible to introduce quantitative tools into the formulation
procedure.

The results of this particular formulation permits the model
builder to take advantage of the built-in sensitivity of dynamic pro-
gramming in selecting the values of the weighting coefficients and the

number of terms to be included in the combined model.

Evaluation of Interaction through the Use of Expertise

The individual predictors in the preceding paragraph utilized ex-

pertise in the determination of the functional form of the individual cost
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predictors due to the lack of sufficient data to use multiple regression
techniques. This area of research has extended the application of ex-
pertise into the evaluation of interaction effects and the incorporation
of these terms into the model. This development is for the limited
data case and permits the minimum sum of squares technique to be
used as a basis for assessing the fit of the function. The specific re-
search problem developed when the weighting of the individual predictors
of cost were not reproducing the original data used in the formulation of
the model. The reproduction of that data is not a difficult task since a
polynomial of one degree less than the number of data points would fit
exactly. However, the functional form of the main effects or first order
effects was selected on a subjective data base. That is, the particular
form of the costs, given that the single independent variable involved
is increased over a wide range values, has been determined to be of
some form, for example y = a+bx, y=alnxory = aebx. Therefore,
when these are combined to obtain a single estimate of y, it is possible
that the results will be unacceptable even for the historical levels of the
variables.

These major deviations are assumed to be due to the interaction of
the variables. If expertise is used to select the form of the second
order terms, that is, those involving pairs of the independent variables,
then it is possible to use the original data over again to determine a
weighting of the second order terms in order to minimize the error

sum of squares. The second order terms are formulated to represent
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the difference between the first order effects and the actual data. This
is not to be confused with what would be the residual of a least squares
fit, it is a number that has a mean not equal to zero and has the physical
interpretation of interaction. This procedure can be repeated by the
model builder as long as the functional form of the interaction has
physical meaning. This area of research has demonstrated still another
combination of quantitative tools and the quantification of subjective

data to provide for a consistent and reproducible methodology for de-
velopment of interaction terms for mathematical models which have a
limited data base.

Since the behavior of a single equation of the type developed by the
rﬁethods discussed above would be difficult to evaluate over a wide
range of each of the variables, it was convenient to develop a computer
program which would perform such evaluations. The results of this
part of the study showed the total combined estimators and their inter-
action terms to be extremely well behaved over a wide range of values
of the variables involved. The basic idea was to provide the model
developer-user with a demonstration of its applicability over a wide .
range of values in order that it may be incorporated into a still larger
model.

The total value of the research can be shown in the performance

of a single equation of the form
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2 2 2
y—alnx2+b1nx3+c1nx4+dln x1+e1n x2+f1n X,

+gln2x4+h1nx In x +p1nx1 In x

1 3 +q1nx21nx

4 3

3 3 3
-l~r1nx21nx4+slnx3 lnx4+t1n xl+u1n x2+v1n X,
+ w ln3 +x1 1 In 1
X, TxInx, Inx, xy Inx,
which was derived by using three data points and the expertise approach

outlined above.

Estimation of Run-Out Costs for Spacecraft Programs

The area of estimation of run-out costs for on-going spacecraft
programs is one where another merger of the quantitative tools and sub-
jective data has been shown to be compatible. The development in this
area was a computerized application of the best fit of the data from a
partially completed subsystem to candidate curves of the percent cost-
percent time type determined from historical data. The utilization of
subjective data was for determining the algebraic form of the fitting
function and establishing which curves taken from historical data should
be considered as candidate curves for prediction of run-out costs of
current subsystems. The quantitative tools are introduced in fitting a
polynomial, computing a least squares criteria for fit of the curve to
the candidate curves and projection of those costs according to the
functional form of the curve selected. The computerized model for
performing the total analysis has been completed.

Additional research is being considered in the area of adaptive type

models which can automatically incorporate new data into the system
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and change form as required in consideration of previously determined
data. Investigations into self-adapting model structure and library
data concepts are being considered. This will necessarily include the
mixture of expertise, historical data, and data with a subjective
estimate of its accuracy in perspective to the formulation, growth and

utilization of mathematical models.

Collection and Analysis of Subjectively Determined Data

An extensive discussion could be presented relative to the collection
and analysis of expertise; however, only the approach presently being
used for collection of data relating to percent time versus percent cost
of spacecraft subsystems will be discussed.

The basic plan in the development of this area has been one of
requesting experts to express their opinion as to the behavior of percent
cost-percent time upon the basis of their experience, primarily with the
Gemini program. The first questionnaire provided complete freedom
in specification of the form of the cost-time relationship. These data
were analyzed to determine a set of general curves which were sub-
mitted with the second questionnaire. In this case the experts selectied
a single curve from those provided to describe the cost-time relation-
ship for each of one hundred cost categories. The selections are then
tested to determine if the selections were non-random on a per category
basis by use of multinomial computations. If this provides a non-

random indication, then a composite of the curves selected for each
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category is determined by a weighted average. These data provide an

estimate of the cost variance over the range of time by direct computation.

If the selections are shown to be random in nature, then more in-
formation is supplied the experts and the tests repeated. If agreement
cannot be achieved then deletion of subjective data by use of extreme
value techniques is initiated.

This research is directed toward determining the sensitivity of the
model which uses these data. That is, the estimates of variance will be
used to indicate the possible error that could be obtained using the sub-
jectively determined data. These estimates will be used to evaluate
the sensitivity of the model to errors in the expertise. However, it
should be pointed out that this is not unlike the possible error that could
be introduced by the use of historical data for building the model.

This particular concept has possible applications in a number of

other areas and will be extended as the opportunities present themselves.

Summary and Conclusions

Quantification of subjective data has been associated with the field
of operations research for a number of years in the area of utility
theory. The experimentation in the determination of utiles or value
associated with various programs has met with varied results. Perhaps
‘,this failure or success of these investigations has been dependent upon
i
the quantitative tools or methods which have accompanied the subjec-

tiveness. The rigor of statistics, mathematics, various optimization
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techniques and significance tests have something to contribute to the
field of quantification of expertise. The technique itself is seen as a
logical development in the extension of complex models to more closely
approximate the total information available to the decision maker. The
intent of this research is not directed at making the decision for the
manager or usurping his prerogatives. It is directed at the systematic
consideration of all aspects of the problem one factor at a time and the
structuring of the analysis such that each of the elements will be com-
bined in the appropriate manner to provide the integrated analysis
desired,

Generally, management eventually makes some type of decision
that results in the issuance of that decision in terms of quantitative
values. It was the objective of the research reported and future re-
search planned in this area to introduce the best quantitative techniques
applicable into the problem of quantifying subjective data and subse-
quently using that data in the formulation and utilization of mathematical
models. Often these models will be computerized and will make the
utilization of that data more convenient. Admittedly these techniques
are in the development stage, but one benefit that may be derived from
research of this type is that it may cause the collection of actual data
of the type needed for the formulation of mathematical models to be
expedited. If this is accomplished then the utilization of subjective data
will have achieved a major contributiobn in the field of mathematical

models.
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It should be pointed out that the research reported in this article
was using expertise to represent physical functions, not to represent
emotion. If it is physical functions that are being represented by
expertise, then they can be tested with the accumulation of actual data
and will serve in the interim as the best that is available for the mathe-
matical model. A direct comparison of the type of results obtained in
the discussion presented above and the type of data presently available
for formulation of the models being considered might provide a more
realistic attitude toward the subject area and adjust the evaluation of
its worth at this time.

One area that has been suggested for the use of the models that
use the subjective data base is in the area of management training, or
the training of project leaders. The experience of previous project
managers could be placed in the form of a model that represents their
experience in various physical situations in the past, this could be
used as a project leader '""game'' for training.

In summary it can be said that the research reported in references
{1} and {2) has precipitated thought on the subject as well as provided
some insight into the problems of cost estimation under the limited

data case.
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INTRODUCTION

Various methods hiv been used to estimate the total cost of space
programs at various points during the life of the program. The previous
report contains one of these ways, but for various reasons (including a
request from NASA MSC), a continuation to extend the research into this
area was made. The problem of selecting a cost distribution function
over time from among many as a best fit to a partial cost distribution,
and the use of the one selected to extrapolate the partial costs to a
completed cost was originated for the utilization of Gemini data for the
extrapolation of Apollo data. However, the generalization of the problem
is apparent, and in fact has already been used for cost estimateg of a
moon t.v, camera,

Since this is an extension of previously reported research, there is
necessarily some repetition of material for orientation purposes, but the
addition merits the repetition,

The hypothesis was that a subsystem of a completed project would follow
the percent time vs. percent cost curve of some subsystem of a previously
completed project. The subsystems of the uncompleted project would not
necessarily follow the curve of the same subsystem of the completed project
because of such factors as the amouni of parallel development, technelogical
difficulties, program changes and other similar reasons. Therefore, the
choice of the best fitting curve should be made from among a '"population" of
curves of subsystems of completed projects., Then the curve which approxi-
mates the available data the closest should be used to estimate the run-out

cost,
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There are three basic phases to the estimation of run-out costs in
this method:

(1) The determination of a polynomial to fit each "population
curve,

(2) The determination of the best fitting curve among the
population to the uncompleted subsystem data and

(3) The determination of the run-out costs. These phases are
shown on the flow chart of Figure 1.

DETERMINE POLYNOMIAL

The data of a completed project which was available to Texas A&M was
the percent time vs. percent cost curves of Gemini. This data consisted of
four intermediate points through which a smooth curve had been drawn (NASA/
MSC data).

To obtain an equation of the different curves, a third degree polonomial
was determined to be the best general fit to the curves. The general form
of the equation is:

£(x) = AX + BX® + CX°

To determine the coefficients of this equation, the method of least
squares was used, A set of four simultaneous normal equations, involving
summations of the decimal percent time raised to powers from zero to six and
the same summations except being multiplied by percent cost with the powers
ranging from zero to three, is soived to give the desired coefficients.

The more data points that are used in the computations, the better the fit
is expected to be, The degree of the polynomial could be increased if

desired in order to obtain a still better fit., This technique was used to

determine the equation and was found to give satisfactory results,




DETERMINE POLYNOMIAL

FOR EACH OF THE SIGNIFICANTLY DIFFERENT
COMPLETED SUBSYSTEM CURVES, DETERMINE
A THIRD DEGREE POLYNOMIAL THAT BEST FITS
THE AVATILABLE DATA POINTS

DETERMINE BEST FITTING CURVE

FOR EACH UNCOMPLETED SUBSYSTEM,
DETERMINE THE BEST FIT OF THE AVAILABLE
DATA POINTS TO EACH COMPLETED SUBSYSTEM

CURVE AND CHOOSE THE ONE THAT BEST FITS

DETERMINE RUN-OUT COSTS

USING THE BEST FITTING CURVE, ANY
COST DATA POINT CAN BE USED TO
DETERMINE THE RUN-OUT COST,

FIGURE 1., FLOW CHART OF RUN-OUT COST ESTIMATION PROCESS




For the specific problem of runout costs of Apollo, the problem of
distinguishing which of the cost distributions are significantly different.
This is not a particularly difficult problem if the number of samples and
conditions of independence in these samples are met; however, due to the
nature of the data this is not a straight-forward application of statistical

inference type of test of significance.

DETERMINE BEST FITTING GEMINI CURVE FOR APOLLO DATA

The data available for an uncompleted subsystem is given as a cost at
a certain time (NASA/MSC data). From the data, the percent time of the pro-
ject is known since the project length is known. What is needed is the
percent cost each of the points represent.

The data points must be tested against each different completed system
curve in such a way as to get the best fit and then choose the one curve
which gives the best fit.

Since the ratios of the cost data points are known, it is possible to
place the first intermediate point at a percent cost of X, With n inter-
mediate data points of an uncompleted subsystems, the n-l1 remaining data

points are at a height k,X, k.X,...,k X (see Figure 2).

3
Using the method of least squares to provide the best fit,

2 2 2
= = .. -k X)° = minimum
(1) (1,=%)7 + (YK X" + oo + (Y -k X)

Where Y., Y ceey Yn are the values of the percent cost of the com-

1 "2

pleted subsystem at the percent time of the data points of the uncompleted
subsystem, these values are obtained from the derived polynomials of the

completed subsystem,
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Figure 2. METHOD OF COST RATIO DETERMINATION

However, the usual method of least squares necessarily weighs each
deviation the same regardless of where it occurs along the abcissa. There
are reasonable arguments why the initial data points might not be as accurate
as subsequent data points for reasons such as the accounting system not
being well established.

More than that, it is intuitively appealing that as the project nears

completion, these data points should be more indicative of the final runout
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cost than earlier ones.

A weighing system which is both appealing and easily used would be to
weigh the error squared by the fraction of project time for each data
point (Zn).

The modified method of least squares to provide the best fit is given
by (2).

2 2 2

(2) (2100 = 0] + [Z2(¥2 = KX)] + ..o + [z (Y - K X)] = min.

Taking the derivative of (2) and setting it equal to zero to obtain
the minimum, (2) 2(yl - X7 (—Zl) + 2(Y2 - kzX)Zz (—kzZz)‘ + 2(Y3 - k3X)

Z3 (—k3Z3) + ... + Z(Yn - an)Zn(— knzn) =0

Solving for X;

2 2 2 2
(3) X-= Y1Z7 + koYyZp, + k3Y¥3Z23 + ... + knYnZn

D I 77 2_ 2 2 2
Z1 + ko'Zo + k3Z3 + ...+ kn Zn

By knowing the value of X, the value of the sum of the squares of (1)
can be determined to obtain a measure of fit for the uncompleted subsystem
to one of the completed subsystem curves. Repeating this with each of
the completed subsystem curves gives a weighted measure of fit for each of
these curves,

By using this measure of fit, the best fitting curve can be determined
by choosing the curve which had a minimum value for the weighted sum of

the squares.

DETERMINE RUN-OUT COST

With the best fitting completed subsystem curve chosen, and the uncom-

pleted subsystem data points located, the run-out cost can be estimated.
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Tﬁe method used to choose the best curve was to place the data points
of the uncompleted subsystem in the appropriate perspective to the completed
subsystem. Each of these points were converted to a percent cost; therefore,
each data point is a percentage of the run-out cost, and any one may be used
to obtain a projection of the 100% o¥ run-out cost of that subsystem,

Since any poeint may be used to estimate the run-out cost, the first
point will be chosen for convenience since equation (3) located the first
intermediate cost point at a percentage of the run-out cost, the relatiomship
of the cost associated with that point to the projected cost is known., Thus,
the run-out cost is the cost at the first point divided by the decimal per-
cent of run-out cost (X).

A program which does the complete analysis of cost run-out has been
completed. The data of the completed significantly different subsystem and
the uncompleted subsystem is the only required information, with the estimated
run-out cost as the information provided the user.

For various reasons, a cost projection for some point other than com-
pleted project time may be required. Therefore, the requested capability
has been inc;¥porated into the program. Program decks have been made avail-

able to M.S.C.



CARD 1

FORMAT COLUMN IDENTIFICATION

I

|

NOTE: A.lindicates an option is to be used, a
0 or blank causes the program to delete an
output option. All fields are Format I5 (right

ad justed)
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- Option 9, Number of intermediate cost points desired
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- Option 8, Number of copies of output desired
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- Option 7, Output of curve name which data best fits

Available only with Option 1
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- Option 6, Output of sum of squares information
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G

- Option 5, Output of uncompleted subsystem name

A

- Option

o

Output of comparison between actual and
computed points

&

- Option 3, Output of cost equation
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- Option 2, Output of simultaneous equations that are

solved for cost equation coefficients

~
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- Option 1, Output of completed subsystem name

332333233333333ﬁ3333i’.333ﬁ33.’..’.3
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- Number of data points for each uncompleted subsystem
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-~ Number of completed subsystems to be used

PROBLEM DATA CARD 1




CARDS

2(a), 3(a), 4(a), ... ; KC+ 1(a) (Where C is integer 3[{L/4])

INPUT FORMAT COLUMN IDENTIFICATION

NOTE: TO BE INCLUDED ONLY IF OPTION ONE IS USED.

CARD IS TO BE INCLUDED IF COLUMN 20 ON FIRST

DATA CARD HAS A 1 AND CARD IS TO BE OMITTED IF

COLUMN 20 OF FIRST DATA CARD IS A ZERO OR BLANK

NRNUBRIVVVAQQUBKOVANARVNUBBIUINAROHUEBNOTRERTIINNEEET N NN

NAME OF COMPLETED SUBSYSTEM

11!0351o|ununulnnnuannuaannna1

DATA CARD SET 2




CARDS 2(b),.3(b), 4(b), ... , KC + 1(b)

’

“
o8 "y
or th or
e®  Y(I +3) - (I +3)  decimal percent of cost of completed i
=3 -
o subsystem. Floating point, i
- 12 ¥~
[ R
- g oR
[ —
=3 " =H
EE X(IT +3) - (T +3) decimal percent of program time of pid-
o3 a3
=g completed subsystem, Floating point. Eg
ot i
o3
o . -
-R
podh-- th
o% Y(I+2) - (I+2) decimal percent of cost of completed
-l
-l
=3 subsystem. Floating point.
g
o3 th
:E X(I + 2) - (I + 2)  decimal percent of program time of com-
-g
:E pleted subsystem. Floating point.
-

Y(I+1) - (I + l)th decimal percent of cost of completed

subsystem., Floating point.

tsg000800
NANBHBRINN

%

X(T+1) - (T + l)th decimal percent of program time of

completed subsystem, Floating point.

Y(I) - Ith decimal percent of cost of completed subsystem,

Floating point,

fronneanay

! 9998995999999999993999959989889999939
FHETHEREE DI BHIE S

99
o n
1

FORMAT COLUMN IDENTIFICATION
6000680000

INPUT
00000000

:

(1) - 1" decimal percent of program time of completed

subsystem, Floating point.

DATA CARD SET 3

(AS MANY CARDS USED AS NEEDED TO CONTAIN
FACH DATA POINT OF THE COMPLETED SUBSYSTEM)

A

o -
o e
[ R




CARDS KC + 2(a), KC + 3(a), KC + 4(a), ...

l

NOTE: To be included only if option five is taken.
Card is to be included if column 40 of first
data card is 1 and card is to be omitted if column

40 of first data card is 0 or blank,

gceocccosdeboscsssnsnoNcRtoReRORONRO0R0B0B0RO00D
NRBUBRT AN AQQUSRIRANN DI TANBRQOUBHTRUNAITINERT RN

%

NAME OF UNCOMPLETED SUBSYSTEM

INPUT FORMAT COLUMN IDENTIFICATION

DATA CARD SET 4




CARDS KC + 2(b), KC + 3(b), KC + 4(b), ...

t

C(L+3) - (I+ 3)th cost of uncompleted subsystem,

Floating Point,

Z(L +3) - (I + 3)th decimal percent of program time of

uncompleted subsystem. Floating point.

C(I+2) - (1+ 2)th cost of uncompleted subsystem.

Floating point,

Z(I +2) - (1 + 2)th decimal percent of program time of

uncompleted subsystem, Floating point,

C(I +1) - (I + 1)th cost of uncompleted subsystem,

Floating point.

Z(I+1) - (1 + l)th decimal percent of program time

of uncompleted subsystem. Floating point,

FﬂﬂﬂﬂﬂﬂﬂﬂlﬂﬂﬂﬂﬂlﬂlllIBﬂlnﬂﬂDlﬂllﬁllﬁllllllllﬂﬁﬂﬁﬂﬂﬂ0000!000000000000

c(1L) - Ith cost of uncompleted subsystem. Floating point,
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FORMAT COLUMN IDENTIFICATION

12348567819

:

Z(1) - Ith decimal percent of program time of uncompleted

subsystem. Floating point.,

DATA CARD SET 5

(As many cards used as needed to contain each data point of the

uncompleted subsystem)




CARDS KC + 2(c), KC + 3(c), KC + 4(c), o..

Note: To be included only if K9 is greater than zero. All fields are
format F10.0.

XP(I+7) - (T + 7)th decimal percent of program time where

estimate of cost of incompleted subsystem is desired.

XP(I + 6) - (I + 6)" "

XP(I + 5) - (I + 5)° "
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eeooo00ce
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XPC(I + 3) - (I + 3)FP "

i
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XP(L + 2) - (1 + )8 "

gogoecog08Q000000000
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%

XP(I + 1) - (I + 1! dec "

wyeaussTen

PORMAT COLUMN IDENTIFICATION

XP(1) - I

where estimate of cost of uncompleted subsystem is

t2348870 ¢

INPUT

¢

desired.

DATA CARD SET 6

(As many cards used as needed to contain each point of the desired

intermediate cost estimates)
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COMPLETED SUBSYSTEMS

( 1
STABILITY CONTROL

THE SET OF SIMULTANEOUS EQUATIONS THAT GIVES THE COEFFICIENTS OF THE COST EQUATION IS,

0.60000000E 01 A ¥ 0.30200000E 01 B + 0.21036500E 01 C + 0.16363999FE 01 D 0.35100000E 01

0.30200000& 01 A + 0.21036500E 01 B + O0.16363999F 01 C + 0.13804407E 01 O 0.23626000E 01

0.21036500E 01 A + 0.16363999FE 01 B + 0.13804407¢ 01 C + 0.12331224E 01 D 0.17818615E 01

]

0.14656199E 01

0.16363999E Ol A + 0.13804407E 01 B + 0.12331224E 01 C + 0.11454203F 01 D

THE EQUATION OF THE COST CURVE 1S,
YA = { 0.12734183E O1){X) + { 0.24018385E 00)(X*#2) + (-0.51360290FE 00) (X=#%3)

YA{ 1) = O.

Yyt 1) = 0.

YA{ 2) = 0.3705
Y { 2) = 0.3700
YA{ 3) = 0.6098
Y { 3) = 0.6100
YAl 4) = 0,7192
Y { 4) = 0,7200
YAT 5 = 0.8110
Yy { 5) = 0.8100
YAl 6) = 1.0000
Y { 6) = 1.0000




0.60000000E

0.30200000E

0.21036500¢

0.16363999¢&

(== ="

01

01

THE SET OF SIMULTANEOUS EQUAT

+

0.30200000E 01 B + 0.2103

*

0.21036500E 01 B + 0.1636:

+

0.16363999E 01 B + 0.1380¢

+

0.13804407E 01 B + 0.1233]

THE
YA = ( 0.15325031€ O1l){X)




t 2)
. AND NAVIGATION

GIVES THE COEFFICIENTS OF THE COST EQUATION IS,

.+ 0.16363999& 01 D

0.34820000E 01

|

' + 0.13804407E 01 D 0.23384050€ 01

L + 0.12331224E 01 D 0.17643951E 01

¥}

. + 0.11454203E 01 D

0.14537200E O1

OF THE COST CURVE IS,
J45120E 00){X##22) + { 0.4795T7535E-01) (X%%3)

1) = O

1} = Oe

2) = 0.3907
+2)Y = 043870
3) = 0.6072
3) = 0.6090
4) = 0.7029
4) = 00,7080
5 = 0.7847
5 = 0.7780
6) = 1.0000
6) = 1.0000




{ 3)
LANDING AND RECOVERY

THE SEV OF SIMULTANEOUS EQUATIONS THAT GIVES THE COEFFICIENTS OF THE COST EQUATION IS,

0.60000000€ 01 A

+

0.30200000E 01 B +# 0.21036500F 01 C + 0.16363999E 01 D 0.28740000E O1

0.30200000E 01 A

+

0.21036500E 01 B + 0.1636399%9E 01 C + 0.13804407E 01 D

0.20551300E 01

0.21036500E 0Ol

>
+

0.16363999E 01 B8 + 0.13804407% 01 C + 0.12331224FE 01 D 0.16215221E 01

L}

0.16363999E 01 A

+
H

0.13804407E 01 B + 0.12331224E 01 C + 0.11454203F 01 D 0.13773223E 01

THE EQUATION OF THE COST CURVE IS,
YA = { 0.67917220E-01){X) + { 0.24107553E 01){(X##2) + (-0.14789307F O1){(X#=3)

YA{ 1) = O.

Yy { 1)y = 0.

YAL 2) = 0.1809
Y { 2) = 0.2000
YA{ 3) = 0.4245
Yy { 3) = 0.4100
YAL{ 4) = 0.5618
Y { 4) = 0.5460
YAl 5) = 0.6894
Y { 51 = 0.7i80
YA{ 6) = 0.9997
Y ( 6) = 1.0000




0.60000000E O1 A

0.30200060E 01 A

0.21036500£ 01 A

0.16363999E 01 A

THE SET OF SIMULTANEDUS EQUAT

+ 0.30200000E 01 B + 0.210

+ 0.210356500E 01 B + 0.1636
|

¥ 0.,16363999E 01 B + 0.1380

+ 0.13804407€E 01 B

+

0.1233

THE
YA = { 0.29594864E 00)({X)




{ 4)
‘RICAL POWER

GIVES THE COEFFICIENTS DOF THE COST EQUATION IS,

+ + 0.16363999E 01 D 0.34410000E 01

.+ 0.13804407€ 01 O 0.23589750€ 01
.+ 0.12331224E 01 D = 0.17921596E 01

.+ 0.11454203F 01 D 0.14763893E 01

OF THE COST CURVE IS,
'"T44T4E O1)(X*#2) + {-0.22933761FE 01)(X%=3)

1) = Oe

1) = O.

2) = 0.2749
2) = 0e2690 .
3) = 0.5990
3) = 0.5820
4) = 0.7325
4) = 0.7400
5) = 602
§) = 0.8500
6) = 1.0000



« 5)
ENVIRONMENTAL CONTROL

THE SET OF SIMULTANEDUS EQUATIONS THAT GIVES THE COEFFICIENTS OF THE COST EQUATION IS,

0.60000000E 01 A + 0.30700000E Ol B + 0.21827480E 01 C + 0.17114856E 01 D 0.33880000E 01

1]

0.30700000E 01 A + 0.21827480E 01 B + 0.17114856E 01 C + 0.14393845E 01 D 0.236147T40E 01

0.18185607E Ol

]

0.21827480E 01 A + O0.17L14856E Ol B + 0.14393845€E 01 C + 0.12753403F O1 D

0.17114856E 01 A + 0.14393845E 01 B + 0.12753403E 01 C + O0.1L741656E 01 D 0.15055952€ 01

"

THE EQUATION OF THE COST CURVE 1S,
YA = { 0.10931744E O1)3{X) + { 0.38231005E 00)(X#%2) + (-0.47605430E 00) (X%#3)

YA( 1) = O.

Y { 1) = 0.

YA{ 2) = 0.2802
Y { 2) = 042900
YA(U 3) = 0.6159
Y { 3) = 0.6000
YA{ 4) = 0.7194
Y { 4) = 0.7230
YAL S5) = 0.7609
Y{ 5) = 0.7750
YA( 6) = 0.9994
Y { 6) = 1.0000

l




{ 6)
PROPULSION

THE SET OF SIMULTANEOUS EQUATIONS THAT GIVES THE COEFFICIENTS OF THE COST EQUATION IS,

0.60000000E 01 A ¥ 0.30200000E O1 B

+

0.21036500E 01 C + 0.16363999¢ 01 D

o

0.34530000E 01

0.30200000F 01 A + 0.21036500E 01 B

‘>

0.16363999E 01 C + 0.13804407& 01 D 0.23607499E 01

+

0.21036500E 01 A + 0.16363999E 01 8 0.13804407E 01 C + 0.12331224E 01 D 0.17903502E Ol

+

0.16363999E 01 A + 0.13804407E 01 B

0.12331224E 01 C + 0.11454203E Ol D = 0.14737186E 01

THE EQUATION OF THE €88T CURVE IS,
YA = ( 0.45990701E 00)(X) + { 0.25680172FE 01){X##2) + (-0.20274310E 01)(X#=3)

YA{ 1) = O.

Y{ 1) = Oa

YAL 2) = 0.2927
Y (- 2) = 0.2700
YA{ 3) = 0.5882
Y { 3) = 0.6100
YA{ 4) = 0.7351
Y { 4) = 0.7450
YA{ 5) = 0.8570
Y { 5) = 0.8280
YA{ 6) = 1.0005
Y { 6) = 1.0000



( 1)
STRUCTURE {ADAPTER])

THE SET OF SIMULTANEQUS EQUATIONS THAT GIVES THE CDEFFICIENTS OF THE COST EQUATION IS,

0.60000000E 01 A + 0.30200000€ 01 B + 0.21036500E 01 C + 0.16363999E 01 O 0.37449999E 01

0.30200000E 01 A

+

0.21036500E 01 B + 0.16363999E 01 C + 0.13804407F 01 D

0.24874649E 01

W

0.21036500FE 01 A + 0.16363999E 01 B + 0.13804407F 01 C + 0.12331224E 01 D 0.18512719E 01

H

0.16363999€E 01 A + 0.13804407E 01 B + 0.12331224E 01 C + 0.11454203E 01 D 0.15055215€E 01

THE EQUATION OF THE COST CURVE 1S,
YA = { 0.14123813E O1){X) + ( 0.36172765E 00)(X%##2) + {(~0.77351250F 00)(X##3)

YA{ 1) = O.

Yt 1) = 0.

YA{ 2) = 0.4140
Y { 2) = 0.3960
YA( 3) = 0.6757
Y { 3) = 0.6980
YA{ 4) = 00,7899
Y{ 4) = 0.,7880
YA( 5) 0.8803
Y { 5} = 0.8630
YA{ 6) = 1.0006
Y1{ 6) = 1.0000




UNCOMPLETED SUBSYSTEMS

STRUCTURE (PRIMARY)

THE SUM OF LEAST SQUARES USING THE I~TH COMPLETED SUBSYSTEM IS,

sLst 1) 0.4004427T0E-03

SLSU 2) = 0.97621518E-04

SLS( 3) = 0.36122584E-02

SLS( &)

"

0.33730622E-02

SLSt 5) = 0.62553304E~03

SLS{ 6} = 0.26911236E-02

L]

SLSt  7) 0.30279424E-03

THE CURVE WHICH BEST FITS THE OATA IS ( 2},
GUIDANCE AND NAVIGATLION ,

THE NO. 1 INTERMEDIATE COST IS $ 16862.3
THE NO. 2 INTERMEDIATE COST IS § 17381.9

THE RUN-DUT COST IS $ 17861.7

INSTRUMENTATION

HE SUM OF LEAST SQUARES USING THE 1-TH COMPLEYED SUBSYSTEM IS,

SLS{ 1) = 0.30832698E~04
SLSt 2) = 0.107%8677E~03
SLS{ 3) = 0.21780565E~02

]

SLS{ 4) 0.16217203€E-02




| THE RUN-QUT COST IS s 10136.6
REACTION CONTROL

HE SUM OF LEAST SQUARES USING THE I-TH COMPLETED SUBSYSTEM 1S,
|

SLSH 1) = 0.11010226E-02

|
SLS{ 2) = 0.17622352E~-02

¥
K SLS( 3% = 0.51921197&-03
_SLSt 4) = 0.29024102E-03

SLSt 5) = 0.6086087TE~03

SLS{  6) = 0.22850492E-03

SLSE T 0.16982195E-02

THE CURVE WHICH BEST FITS THE DATA IS 1 6)»

PROPULSION
THE NO. 1 INTERMEDIATE COST ;s s 22244.8
THE NO.) 2 INTERMEDIATE COST IS $ 22250.6
THE RUN-OUT COST IS $ 21894.2

LAUNCH ESCAPE

HE SUM DF LEAST SQUARES USING THE I-TH COMPLETED SUBSYSTEM IS,

SLSt 1) = 0.51448849E-03
SLS{ 2) = 0.10585605E-02
SLS{ 3) = 0.77737073E~03

SLS{ &) 0.26062358E-03




\ SLS{ 5) = 0.99991638E-04
\
\ SLS{ 6) = 0.11558883E~02
‘ SLS( 7)) = 0.22257988E~04
!

THE CURVE WHICH BEST FITS THE DATA IS ( T},
STRUCTURE {ADAPTER)

| THE ND. 1 LNTERMEDIATE COST IS $ 6023.5

: ; THE NO. 2 INTERMEDIATE COST IS $ 6052.3
THE RUN-OUT COST IS $ 6022.0

|

| COMMUNICATIONS

THE SUM OF LEAST SQUARES USING THE I-TH COMPLETED SUBSYSYEM IS,

SLS(e 1)

0.10084036E-02

S
|
%

SLS{ 2) = 0.43504378E~03

SLS{ 3) = 0.474560056E~02

SLS{ 4) = 0.4%065917E-02

SLSt 5) = 0.12758655E~02

g e e

| ' SLS{ 6) = 0.40859870E-02
\
\\\ . SLS{ 7) = 0.94758913E-03
\F\ THE CURVE WHICH BEST FITS THE DATA IS { 2),
\\ GUIDANCE AND NAVIGAT LON

\
\\\\ B THE NO. 1 INTERMEDIATE COST IS § 9569.5

THE NO. 2 INTERMEDIATE COST IS $ 9864.3




T ———————s

SLS{ 5) = 0.223537486~03
SLS( 6) = 0.98338142E-04
SLS{ 7) = 0.85920865E~03
THE CURVE WHICH BEST FITS THE DATA IS ({
PROPULSION
NO. 1 INTERMEDIATE COST IS § 3723.0
NO. 2 INTERMEDIATE COST IS $ 3723.9

THE RUN-QUT COST IS ¢ 3664.3

6),



